

YTO TAKOE HSA

HSA = Heterogeneous System Architecture

YTO TAKOE HSA

Гетерогенные вычисления = GPGPU ?

4TO TAKOE HSA

Гетерогенные вычисления = GPGPU ?

4TO TAKOE HSA

Гетерогенные вычисления = GPGPU ?

4TO TAKOE HSA

Гетерогенные вычисления = GPGPU ?

HSA: HETEROGENEOUS SYSTEM ARCHITECTURE

HSA HIGH LEVEL ARCHITECTURE

COCTAB HSA FOUNDATION - 2013

Founders

Promoters

Supporters

Contributors

Academic

NTHU Programming Language Lab

NTHU System Software Lab

SHARED VIRTUAL MEMORY (TODAY)

ЧТО МЫ ИМЕЕМ СЕГОДНЯ

ЧТО МЫ ИМЕЕМ СЕГОДНЯ

ЧТО МЫ ИМЕЕМ СЕГОДНЯ

ОБЩАЯ КОГЕРЕНТНАЯ ПАМЯТЬ (HUMA)

HSA KEY FEATURES

Entire memory space:
Both CPU and GPU can access and allocate any location in the system's virtual memory space

Без HSA

- CPU explicitly copies data to GPU memory
- GPU completes computation
- CPU explicitly copies result back to CPU memory

HSA

- CPU simply passes a pointer to GPU
- GPU complete computation
- CPU can read the result directly no copying needed!

ОТРИМАТ ВАЩОО

ОБЩАЯ КОГЕРЕНТНАЯ ПАМЯТЬ

УПРАВЛЕНИЕ ОЧЕРЕДЯМИ ЗАДАЧ

ДИСПЕТЧЕРИЗАЦИЯ В РЕЖИМЕ ПОЛЬЗОВАТЕЛЯ

HSA

ПОДДЕРЖКА ТЕХНОЛОГИЙ ПРОГРАММИРОВАНИЯ

C++ AMP
C++
C#
OpenCL
OpenMP
Java
Python

LANGUAGE SUPPORT ALLOWS HSA TO HAVE MULTIPLE SOFTWARE EXECUTION MODELS

JAVA ENABLEMENT BY APARAPI

Aparapi = Runtime capable of converting Java™ bytecode to OpenCL™

ПЛАНЫ ПО ПОДДЕРЖКЕ JAVA

LOOKING FOR FACES IN ALL THE RIGHT PLACES

LOOKING FOR DIFFERENT SIZE FACES

BY SCALING THE VIDEO FRAME

LOOKING FOR DIFFERENT SIZE FACES

BY SCALING THE VIDEO FRAME

HAAR CASCADE STAGES

22 CASCADE STAGES, EARLY OUT BETWEEN EACH

Final HD Calculations

Search squares = 3.8 million Average features per square = 124 Calculations per feature = 100 Calculations per frame = 47 GCalcs

Calculation Rate

30 frames/sec = 1.4TCalcs/second 60 frames/sec = 2.8TCalcs/second

...and this only gets front-facing faces

CASCADE DEPTH ANALYSIS

UNBALANCING DUE TO EXITS IN EARLIER CASCADE STAGES

- When running on the GPU, we run each search rectangle on a separate work item
- Early out algorithms, like HAAR, exhibit divergence between work items
 - Some work items exit early
 - Their neighbors continue
 - SIMD packing suffers as a result

PROCESSING TIME/STAGE

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 GHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

ПРОИЗВОДИТЕЛЬНОСТЬ CPU-VS-GPU

AMD A10 4600M APU with Radeon™ HD Graphics; CPU: 4 cores @ 2.3 MHz (turbo 3.2 GHz); GPU: AMD Radeon HD 7660G, 6 compute units, 685MHz; 4GB RAM; Windows 7 (64-bit); OpenCL™ 1.1 (873.1)

HAAR SOLUTION

RUN DIFFERENT CASCADES ON GPU AND CPU

LINES-OF-CODE AND PERFORMANCE FOR DIFFERENT PROGRAMMING MODELS

("Hessian" kernel)

AMD A10-5800K APU with Radeon™ HD Graphics – CPU: 4 cores, 3800MHz (4200MHz Turbo); GPU: AMD Radeon HD 7660D, 6 compute units, 800MHz; 4GB RAM. Software – Windows 7 Professional SP1 (64-bit OS); AMD OpenCL™ 1.2 AMD-APP (937.2); Microsoft Visual Studio 11 Beta

MORE INFO AT

http://hsafoundation.com

HSA РЕШЕНИЯ ОТ ARM (CORTEX-A15 MALI-T600)

- Google Chromebook
- Google Nexus 10
- InSignal Arndale Community Board

AMD "KAVERI" 2.0 PLATFORM DETAILS

APU Features

- New "SteamrollerB" CPU Core with up to 20% performance* increase over "Richland"
 - Up to 4 Steamroller cores and 4 MB total L2 cache
 - Temperature Smart Turbo Core
- New Power Optimized Graphics Core Next with up to 30% performance* increase over "Richland"
 - Multiple DirectX® 11.1 GPU configurations
 - Dual Graphics support with "Crystal" Series
- New AMD fixed function acceleration
 - UVD 4.2 Universal Video Decode Engine
 - VCE 2.0 Video Compression Engine
 - New ACP (Audio Co-Processor)
 - SAMU 2.1 Secure Asset Management Unit
- New Display and I/O Features
 - New PCIe Gen3 x16 for discrete GPU expansion
 - New Dedicated PCIe SSD interface
 - PCle Gen2 1 x4, 4 x1, 1x4 UMI
 - 4096 x 2160 resolution per display output
 - 16K x 16K Max Eyefinity SLS resolution
 - "Lightning Bolt" Docking Solution
- Power Management and Battery Life
 - 35W to 15W TDPs
 - Targeting ~11 Hours Battery Life MM07* 62WHr (~8.5Hr 45WHr)
 14" 1366x768 eDP panel
 - New AMD Start Now 3.0 with smart sleep

QUESTIONS AND ANSWERS